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Abstract:
The Standardized Precipitation Index (SPI) is now widely used throughout the world in both a research and an operational
mode. For arid climates, or those with a distinct dry season where zero values are common, the SPI at short time scales is
lower bounded, referring to non-normally distributed in this study. In these cases, the SPI is always greater than a certain
value and fails to indicate a drought occurrence. The nationwide statistics based on our study suggest that the non-normality
rates are closely related to local precipitation climates. In the eastern United States, SPI values at short time scales can be
used in drought/flood monitoring and research in any season, while in the western United States, because of its distinct
seasonal precipitation distribution, the appropriate usage and interpretation of this index becomes complicated. This would
also be the case for all arid climates. From a mathematical point of view, the non-normally distributed SPI is caused by
a high probability of no-rain cases represented in the mixed distribution that is employed in the SPI construction. From a
statistical point of view, the 2-parameter gamma model used to estimate the precipitation probability density function and
the limited sample size in dry areas and times would also reduce the confidence of the SPI values.

On the basis of the results identified within this study, we recommend that the SPI user be cautious when applying
short-time-scale SPIs in arid climatic regimes, and interpret the SPI values appropriately. In dry climates, the user should
focus on the duration of the drought rather than on just its severity. It is also worth noting that the SPI results from a
statistical product of the input data. This character makes it difficult to link the SPI data to the physical functioning of the
Earth system. Copyright  2006 Royal Meteorological Society
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1. INTRODUCTION

The Standardized Precipitation Index (SPI) is widely
accepted and used throughout the world in both research
and operational modes because it is normalized to a
location and is normalized in time. This standardization
allows the SPI to determine the rarity of a current drought
event, as well as the probability of the precipitation
necessary to end the current drought (McKee et al.,
1993). It also allows the SPI to be computed at any
location and at any number of time scales, depending
upon the impacts of interest to the user. On the basis
of an analysis of stations across Colorado, McKee et al.
(1993) determined that the SPI is in mild drought 24%
of the time, in moderate drought 9.2% of the time, in
severe drought 4.4% of the time, and in extreme drought
2.3% of the time. These percentages are expected from a
normal distribution of the SPI.

* Correspondence to: Hong Wu, Texas Institute for Applied Environ-
mental Research, Tarleton State University, Stephenville, TX 76402,
USA. E-mail: hwu@tiaer.tarleton.edu

The first step in the SPI calculation is to determine
the probability density function (PDF), which describes
the long-term observed precipitation. Next, the cumula-
tive probability of the observed precipitation is computed.
The inverse normal (Gaussian) function is then applied to
the cumulative probability, resulting in the SPI (Guttman,
1998). This procedure is an equiprobability transforma-
tion (Panofsky and Brier, 1958). The essential feature of
the equiprobability transformation is that the probability
of being less than a given value of the obtained cumu-
lative probability should be the same as the probability
of being less than the corresponding value of the normal
distribution.

Statistically, precipitation is not normally distributed.
Since it is zero-bounded, and since nonprecipitation days
outnumber precipitation days in many cases, precipita-
tion distributions are positively skewed. Furthermore, a
short-time scale will increase the precipitation variabil-
ity, leading to a highly skewed distribution. When the
probabilities of receiving given amounts of precipitation
were estimated by fitting the gamma distribution, Barger
et al. (1959(a)) noted ‘These estimated probabilities are
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subject to error, of course. This error is greater for 1-week
amounts than 2-week or 3-week totals and is greater in
drier areas and seasons. Because the gamma-distribution
fits individual storm rainfall better than the frequencies of
rainfall totals in short periods of time, a high frequency of
no-rain cases leads to poor fits of the observed frequen-
cies.’ Consequently, the parameters used in the gamma
distribution to fit 1-, 2-, and 3-week precipitation totals
were estimated by excluding zero or trace precipitations
(Barger et al., 1959(b)).

Guttman (1999) pointed out that different SPI values
will be obtained if different probability distributions are
used to describe the observed precipitation. He concluded
that the Pearson Type III distribution (PE3) is the best
universal model for the SPI calculation after comparing
several models. In addition, lognormal, extreme value,
and exponential models have been widely applied in the
simulations of precipitation distribution (Lloyd-Hughes
and Saunders, 2002; Madsen et al., 1998; Thom, 1966;
Todorovic and Woolhiser, 1976).

In this study, the 2-parameter gamma PDF was cho-
sen to fit the frequency distribution of precipitation
for the SPI calculation because this distribution is cur-
rently used by the National Drought Mitigation Cen-
ter (NDMC, drought.unl.edu), Western Regional Climate
Center (WRCC, wrcc.dri.edu), and the National Agricul-
tural Decision Support System (NADSS, nadss.unl.edu)
and because the SPI computing software package based
on the 2-parameter gamma model has been distributed to
about 60 countries. In addition, the C++ code, developed
by the Department of Computer Science and Engineering
at the University of Nebraska-Lincoln to compute weekly
SPI values, which will be used for further analyses in this
study, is based on the same gamma model.

Theoretically, the SPI can be computed from as short
as a 1-week time scale. Edwards and McKee (1997)
indicated that, conceptually, although the SPI has a
standard normal distribution with an expected value of
zero and a variance of one, this is not always the case
for the SPI at short time scales because of the skewed
precipitation distribution. For dry climates or those with
a distinct dry season where zero values are common, there
will be too many zero precipitation values in particular
seasons. As a result, the calculated SPI values at short
time scales may not be normally distributed because of
the highly skewed precipitation distribution and because
of the limitation of the gamma-fitted distribution referred
to by Barger et al. (1959(a)). The biased SPI values were
also mentioned by Lloyd-Hughes and Saunders (2002)
and Sonmez et al. (2005). Under these circumstances,
knowing how to apply and interpret the SPI appropriately
is critical.

Thus, the objective of this study is to reveal the effects
of arid climates and dry seasons on short-time-scale SPI
values. To investigate whether the computed SPI values
at short time scales from different precipitation regimes
across the contiguous United States represent drought and
flood events in a similar way (McKee et al., 1993), the
normality test will be conducted on SPI values at various

locations. Then, the reasons that lead to the biased SPI
values will be explored. Finally, suggestions will be made
with regard to the appropriate use and interpretation of
the SPI on the basis of the climate regimes. We expect
this study, along with a previous one, which shows the
effect of the length of record on the SPI calculation (Wu
et al., 2005), to provide guidance to the user in applying
the SPI more appropriately, accurately, and effectively.

2. DATA SOURCES AND NORMALITY TEST

2.1. Data sources
The daily precipitation data used in the SPI calcula-

tion for this study were obtained from two sources. The
first one was the High Plains Regional Climate Center
(HPRCC, www.hprcc.unl.edu) of the United States. The
HPRCC maintains quality-controlled daily precipitation
records for 7 states including Colorado, North Dakota,
Iowa, Kansas, Nebraska, South Dakota, and Wyoming.
The lengths of records of the stations selected from the
HPRCC database ranged from 1876–2004 to 1900–2004
and the selected stations did not have missing data. The
second data source was the Applied Climate Information
System (ACIS, www.rcc-acis.org), an internet-based sys-
tem designed to provide direct access for user-specified
queries to climate data archives. This system is operated
by NOAA’s Regional Climate Centers (RCCs) and the
National Climatic Data Center (NCDC). In addition to
the 146 stations obtained from the seven states within the
HPRCC regional database, 72 more stations were selected
from 33 other states using the ACIS database. Their sta-
tion histories ranged from 1876–2004 to 1955–2004.
Fewer stations were selected from the ACIS database than
the HPRCC database because of the higher percentages
of missing data and shorter lengths of the record period.
We limited the missing data percentages of the selected
stations to less than 3%. Furthermore, we replaced all
the missing data with zero because no rain for a sin-
gle day has a high probability. Figure 1 illustrates the
distribution of the selected stations across the country
for this study. Because of the limited data availability
in some states, the selected stations are not evenly dis-
tributed. For example, Arizona, California, and Nevada
are regions of interest because of their dry climate and
unevenly distributed seasonal precipitation. However, the
data limitations were such that only a few available sta-
tions were selected in California, and no stations were
selected in Arizona and Nevada.

2.2. Normality test of frequency distribution of SPI
values

SPI values at 1- to 24-week time scales were computed
weekly for each year during the available periods using
the daily precipitation data from the 218 selected stations.
The distribution of these SPI values at each time scale for
each week during the period of record was tested to see
whether the SPI values were distributed normally through
the equiprobability transformation. The normality test
was conducted by graphically inspecting the histogram
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Figure 1. Selected weather stations across the contiguous United States used in this study. Stars denote the stations that are used as case studies.
The numbers appearing on the states indicate the average non-normality rates (%) of the 4-week SPI for each state. N/A means the rate is not

available for the state.

or probability plot of the data (Thode, 2002). In addition,
three criteria to assess the normality using the PROC
UNIVARIATE program within SAS (SAS Institute, Inc.,
Cary, NC, USA) were used. A distribution is considered
non-normal when its variables related to the distribution
meet three criteria simultaneously: (1) Shapiro–Wilk
statistic, W , less than 0.96; (2) p-values less than 0.10;
and (3) the absolute value of the median greater than
0.05. Otherwise, the distribution is normal. The W
statistic is the ratio of the best estimator of the variance
(based on the square of a linear combination of the order
statistics) to the usual corrected sum of squares estimator
of the variance. The p-value is the probability that is
associated with the W statistic. The absolute value of
the median less than 0.05 guarantees that the middle
value when SPI values are sorted in order of increasing
(or decreasing) magnitude is not greater than ±0.05.
These criteria were checked for several more stations,
which were found to behave in the same manner. The
results of the test were analyzed for six representative
stations (with long station histories) representing different
climates regimes. Nationwide statistics on the test were
also given. In addition, the causes of the non-normality
were explored from both mathematical and statistical
points of view.

3. RESULTS AND DISCUSSION
3.1. Frequency distribution plots

Figure 2 shows the frequency distribution of seven
dry/wet categories resulting from the 1-, 4-, 8-, and
12-week SPI values in the 1st, 9th, 17th, 25th, 33rd,

41st, and 49th week of the year for Columbus, New
Mexico during 1910–2004. One needs to know that
the time scale associated with an SPI value is the date
for the end of the analysis period. For instance, the
12-week SPI in the 25th week of the year means end-
ing the 12-week calculation on week 25. The x-axis is
the seven categories suggested by McKee et al. (1993)
including extremely dry (SPI <= −2.0); severely dry
(−1.5 > SPI > −1.99); moderately dry (−1.0 > SPI >
−1.49); near normal (−0.99 < SPI < 0.99); moderately
wet (1.0 < SPI < 1.49); very wet (1.5 < SPI < 1.99);
and extremely wet (SPI >= 2.0). The y-axis shows the
frequencies of the dry/wet events that occur within the
seven categories. As suggested, some of the distributions,
especially for shorter time scales, are lower bounded and
do not have values less than −1.0, referred to the non-
normal distribution in this study. Figure 3 illustrates a
time series, also for Columbus, NM, of the 4-week SPI at
the 25th week of each year (corresponds with late June)
for the period 1910–2004. Obviously, the 4-week SPI
values never are less than −0.5 during 1910–2004.

3.2. Non-normality plots

We selected six stations with long periods of record
from various climate regimes to illustrate when non-
normal SPI distributions occur by season, and at what
time scales and in which locations this occurs. The
six stations (Figure 1) and their periods of record are:
Alliance 1 WNW, Nebraska (1894–2004), Bozeman
Montana St Univ., Montana (1893–2004), Clayton 1
SSW, Georgia (1894–2004), Columbus, New Mexico
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Figure 2. Frequency distribution of dry/wet events for 1-, 4-, 8-, and 12-week SPIs in the 1st, 9th, 17th, 25th, 33rd, 41st, and 49th weeks of the
year for Columbus, New Mexico, during the period 1910–2004. SPI categories: −3 denotes extremely dry; −2 severely dry; −1 moderately

dry; 0 near normal; 1 moderately wet; 2 very wet; 3 extremely wet.

(1910–2004), Elkins, West Virginia (1926–2004), and
Sacramento WSO City, California (1878–2004).

Figure 4 presents the SPI non-normality distributions
for the six stations based on the three predetermined
test criteria. As indicated, the SPI with time scales up
to 4 weeks (about 1 month) is distributed non-normally
in the winter season for Alliance 1 WNW. For stations

Bozeman Montana St Univ. and Clayton 1 SSW, most
of the 1-week SPIs are not normally distributed. By the
end of the year, the SPI with non-normal distribution
increases at longer time scales for Bozeman at Montana
St University. It appears that the SPI is distributed
normally at almost all time scales throughout the year
for Elkins. In contrast, Columbus and Sacramento WSO
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Figure 3. 4-week SPI for week 25 during the period 1911–2004 in Columbus, New Mexico.

City have obvious seasonal spikes in their SPI non-
normality distributions. In Columbus, SPI values with
time scales up to 12 weeks are distributed non-normally
at most times of the year except during the 28th through
36th weeks of the year (early July to early September).
In Sacramento, the time scales of SPI values with non-
normal distributions begin to increase from the 20th week
(in late May) and reach their highest point at the 38th
week of the year (in September), and then gradually drop
back by the end of the year.

What causes the differences in the SPI distribution
among the six stations? Figure 5 displays the correspond-
ing average 4-week precipitation total distribution over a
year for the six stations. The precipitation distributions
suggest that the SPI non-normality distribution is closely
related to the precipitation distribution. Most of the pre-
cipitation for Alliance falls in the middle of a year, with
only little amounts occurring during the winter season.
The precipitation distribution pattern of Bozeman is sim-
ilar to that of Alliance. However, one should note that
the ratio of the maximum precipitation total to the min-
imum precipitation total for Bozeman (R = 4.21) is less
than that for Alliance (R = 8.69), resulting in fewer zero
precipitation values for Bozeman. The precipitation dis-
tributions for Clayton (R = 1.55) and Elkins (R = 1.84)
are even throughout the year. The SPI distributions for
these two stations, thus, are normal at almost all time
scales during the year. On the other hand, precipitation
distributions for Columbus (R = 11.11) and Sacramento
(R = 956.83) exhibit strong seasonality. According to
the distributions, it is easy to see why the SPI val-
ues distribute normally during the 28th–36th weeks of
the year for Columbus and why SPI non-normal dis-
tributions for Sacramento occur during the 20th–48th
weeks.

3.3. Nationwide statistics on non-normality rates

Table I lists the average non-normality rates (percent-
ages) for the SPI values at 1- to 24-week time scales
for each state. The states are clustered by their climate
regions. The non-normality rates of the states within
the same climate region are not homogeneous because
of topographic contrasts among the stations, leading to
a variety of precipitation seasonalities. Generally, the
non-normality rates within the Southwest, Northwest and
High Plains regions range from a 1-week up to an 8-
week SPI or longer. Most of the states in the remaining
regions have high non-normality rates for 1- and 2-week
SPI values only. The 4-week SPI non-normality rates of
each state are also labeled in Figure 1.

In order to reveal the relationship between the non-
normality rates and seasons, Figure 6 depicts the changes
of the normal versus non-normal percentages of the
4-week SPI over the year for some states that have
a relatively high non-normality percentage and have
different precipitation seasonalities. These states include
four states from the Northern Plains (North Dakota, South
Dakota, Nebraska and Kansas), New Mexico from the
Southwest and three from the West Coast (California,
Oregon and Washington). Obviously, the non-normality
rate changes with the seasons, which, in turn, is related
to the precipitation distributions. About 30% of the 4-
week SPI values are found to be non-normal in January,
November, and December for the Northern Plains states.
For New Mexico, the non-normally distributed 4-week
SPI values are spread over the whole year except from
late July to early September. In the West Coast states,
over 40% of the non-normal 4-week SPI values appear
between June and October.

3.4. Reasons for the non-normal SPI distributions

The formulas used to calculate the SPI values were
investigated to explore the reasons for the non-normal
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Figure 4. SPI non-normality distribution plots for (a) Alliance 1 WNW, Nebraska (1894–2004), (b) Bozeman Montana St Univ., Montana
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Figure 4. (Continued).
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Figure 5. Four-week precipitation total distributions for (a) Alliance 1 WNW, Nebraska (1894–2004), (b) Bozeman Montana St Univ., Montana
(1893–2004), (c) Clayton 1 SSW, Georgia (1894–2004), (d) Columbus, New Mexico (1910–2004), (5) Elkins, West Virginia (1926–2004), and
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The x-axis represents the week of the year. The y-axis shows the 4-week precipitation totals (mm).
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Figure 6. Normal versus non-normality percentages for the 4-week SPI over a year for (a) Northern Plains, (b) New Mexico, and (c) West Coast.
Light bars denote the percentage of normal distribution; Dark bars denote the percentage of non-normal distribution.
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Figure 7. Relationship among SPI, t, H(x), and G(x) in August for Sacramento, California. (a) 3-month SPI; (b) 6-month SPI. The x-axis is
the precipitation amount (mm) in an ascending order; the left y-axis is the SPI and t values; the right y-axis depicts the G(x) and H(x) values.

SPI distribution. The SPI values used in this study were
calculated on the basis of the following theory.

As discussed before, the gamma distribution is used
to fit precipitation time series. It is defined by (Thom,
1966):

g(x) = 1
βα#(α)

xα−1e−x/β (1)

where β is a scale parameter, α is a shape parameter,
and #(α) is the ordinary gamma function of α. The
estimations of β and α can be found in Thom (1966),
and Edwards and McKee (1997).

The distribution function, from which probabilities can
be obtained, is:

G(x) =
∫ x

0
g(t)dt (2)

Since a precipitation distribution may contain zeros,
the mixed distribution function of zeros and continuous
precipitation amounts needs to be employed, given by
(Thom, 1951)

H(x) = q + (1 − q)G(x) (3)

where q is the probability of a zero, and is estimated by
m
n , in which m is the number of zeros in a precipitation
time series n.

Finally, the SPI is estimated by the rational approxima-
tion approach (Hastings, 1955; Abramowitz and Stegun,
1965):

SP I = −
(

t − c0 + c1t + c2t
2

1 + d1t + d2t
2 + d3t

3

)
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for 0 < H(x) ≤ 0.5 (4)

SP I = +
(

t − c0 + c1t + c2t
2

1 + d1t + d2t
2 + d3t

3

)

for 0.5 < H(x) ≤ 1.0 (5)

where,

t =
√

1

H(x)2 for 0 < H(x) ≤ 0.5 (6)

t =
√

1

(1.0 − H(x))2 for 0.5 < H(x) ≤ 1.0 (7)

c0 = 2.515517
c1 = 0.802853
c2 = 0.010328
d1 = 1.432788
d2 = 0.189269
d3 = 0.001308

(8)

Equation (4) computes the negative SPI values, while
Equation (5) computes the positive values. In order to
have balanced negative and positive values, t must be
the same under the two situations: 0 < H(x) ≤ 0.5 and
0.5 < H(x) ≤ 1.0. The parameter t is determined by
Equation (6) when 0 < H(x) ≤ 0.5 and by Equation (7)
when 0.5 < H(x) ≤ 1.0. Thus, H(x) is critical in deter-
mining whether negative and positive SPI values are
symmetric, which leads to a normal distribution.

Figure 7(a) and (b) illustrate the changes of the 3- and
6-month (about 12- and 24-week) SPI values with H(x),
G(x) and t in August for Sacramento, CA, respectively.
The previous tests showed that 3-month SPI values in
August are non-normally distributed (the intersection of
x = 32 and y = 12 in Figure 4), and 6-month SPI val-
ues are normally distributed (the intersection of x = 32
and y = 24 in Figure 4). At the 3-month time scale, the
lowest SPI value is −0.40, while the highest value is
2.58. At the 6-month time scale, the lowest value reaches
−2.27 and the highest reaches 2.84. It is found that, at
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Figure 8. Two-parameter gamma probability density functions (PDFs)
curves for 3-(broken line) and 6-months (solid line) precipitation in

August for Sacramento, California.

the 3-month scale, the H(x) curve separates from the
G(x) curve significantly for low-precipitation amounts,
and the two converge slowly as the precipitation amount
increases, indicating q, the probability of a zero, is large
(see Equation (3)). In other words, there is a high prob-
ability of zero values within the August 3-month pre-
cipitation total. In fact, there are 43 zeros in the 125
precipitation time series used to compute the 3-month
SPI values for August. The unusually high H(x) when
0 < H(x) ≤ 0.5 leads to the t values that are not sym-
metric when 0.5 < H(x) ≤ 1.0. As a result, SPI values
are non-normally distributed. On the contrary, because all
the 6-month precipitation totals are greater than zero, the
H(x) curve is completely overlaid with the G(x) curve.
Therefore, t is symmetric, resulting in the SPI being nor-
mally distributed.

To further demonstrate the effects of low-precipitation
seasons on the SPI calculation, Figure 8 depicts the
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Figure 9. Equiprobability transformations from the fitted 2-parameter gamma distribution to the standard normal distribution for 3- and 6-month
precipitation in August for Sacramento, California. The broken line designates the empirical cumulative probability distribution derived from
the actual values of 3-month and 6-month precipitation amounts. The smooth curve denotes the cumulative probability distribution of the fitted

gamma distribution to the precipitation data.
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gamma PDF derived from the 3- and 6-month precipi-
tation observations in August for Sacramento, CA. The
3-month curve (often referred to as a hyperexponential
distribution) shows a typical characteristic of precipi-
tation distribution in low-precipitation seasons or dry
climates, suggesting that the probability of having a low-
precipitation total is very high. In contrast, the 6-month
curve is a unimodal distribution with a slightly pos-
itive skew. These two different shapes of PDFs will
define two different cumulative probability distribution
functions (CDFs), which will be used to estimate the
SPI through the equiprobability transformation. Figure 9
illustrates the equiprobability transformations from the
fitted 3- and 6-month gamma CDFs to the standard nor-
mal distribution, resulting in the 3- and 6-month SPI
values, respectively. As can be seen, because the 3-month
precipitation observations contain too many zero and
trace precipitation amounts, the cumulative probability
of a very small amount of precipitation is very high. As
a result, a small precipitation amount will correspond to a
high SPI value. Referring back to Equation (3), the high
probability of zero frequencies will produce a high q, and
the high q will be the lower untransformed bound. Conse-
quently, the SPI values will always be greater than a cer-
tain value. For instance, a 0.5 mm precipitation total for
the 3-month time scale will result in an SPI value of about
1.8, while for the 6-month time scale, the same amount
of precipitation will result in an SPI value of −1.5.

Therefore, from a mathematical point of view, the SPI
values are lower bounded because of a high probabil-
ity of zero precipitation events. In addition, we need
to question the confidence of the computed SPI val-
ues by the 2-parameter gamma model. As mentioned
before, the model selected to simulate the precipita-
tion distribution could affect the confidence in the SPI
results, because the gamma model used in this study
only has two free parameters, which would not give
the best goodness-of-fit for the given data. Wilks (1990)
proposed a method to more precisely estimate gamma-
distribution parameters using data containing zeros. It
is not clear whether this solution could improve the
accuracy of the SPI estimation. Also, other alterna-
tives models (e.g. PE3) are worthy to be studied. Thus,
further study will focus on the methods for the esti-
mation of the precipitation distribution parameters for
arid climates or for those with a distinct dry sea-
son.

The other factor that affects the confidence of the com-
puted SPI values is the limited sample size that can be
used in the gamma-distribution fitting of precipitation
data because of the high chances for zero precipitation
values at the shorter time scales. Guttman (1994) con-
cluded that more records are needed for a stable estima-
tion in the tail of the SPI distribution, which is related to
extreme events (especially drought events in this study).
In the given example for Sacramento, there are 43 zeros
out of the 125 precipitation time series used to compute
the 3-month SPI values for August. The sample size that

can be used in the estimation of the precipitation distri-
bution is reduced by 1/3. In this case, the accuracy of the
estimation of the tails is, therefore, suspect.

Although the short-time-scale SPI values accurately
portray the mixture of a lot of dry days and a few wet
days in dry areas and times, the lower bounded SPI
values (or non-normally distributed SPI values) fail to
indicate a drought occurrence. In fact, the SPI represents
a cumulative probability of precipitation associated with
a specific location or time scale. It does not have to
indicate a drought or flood. The appropriate use and
interpretation of the SPI values under these circumstances
should be done with caution. The discussion of short-
term drought in dry climates, or low precipitation, is
meaningless since no rain is a normal part of the local
climate. In such climate regimes, drought occurrence
should be related to the time scale. For regions with
dry climates or low-precipitation seasons, periods without
precipitation are very common. Short periods without rain
would not make a drought. The critical feature is how
long the drought lasts, rather than how dry it is (Clark,
1993).

It is also worth noting that the SPI is a statistical
product of the available data set at a given location since
the SPI calculation is based on the input data set. The
computed SPI values will be slightly different, as the data
set changes either temporally or spatially. This character
makes it difficult to rationalize, for instance, when the
drought officially started and when it ended according to
the varying SPI values. Therefore, the SPI is a research
tool rather than an attempt to link the input data to the
physical functioning of the Earth system.

4. SUMMARY

In this study, the effects of low-precipitation seasons and
dry climates on the SPI calculation were demonstrated
on the SPI values from 1 to 24 weeks for each week of
the year for 218 selected weather stations from 40 states
in the contiguous United States. From a mathematical
point of view, the SPI values are lower bounded when
a high frequency of zero values (no precipitation cases)
occurs, leading to a non-normally distributed SPI. Under
these circumstances, the SPI fails to adequately indicate a
drought occurrence. Nationwide statistics suggest that the
non-normality rates are closely related to local precipita-
tion regimes. In the eastern United States, SPI values at
short time scales can be used in drought/flood monitoring
and research for any season, while in the western United
States (in those areas having distinct seasonal precipi-
tation distributions), the appropriate explanation of this
index becomes complicated. This would be the case in
other arid regions as well.

Although the SPI approach is reasonable, the 2-
parameter gamma distribution we used to simulate the
precipitation data would reduce the reliability of the
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computed SPI values because of its limitation in short-
time-scale simulations. In addition, because of the lim-
ited sample size used to simulate precipitation distri-
butions in dry climates, the estimations of the model
parameters from the small data samples are prone to
large errors, especially in the tails of the distributions,
which is what we are most interested in. Therefore,
we remind the SPI user to be cautious when apply-
ing and interpreting SPI values in and between various
regions having variable climate regimes. In dry climates,
the analyst should focus on the duration of the drought
rather than on just its severity. Furthermore, the SPI
is only a statistical product of the input data, limit-
ing its role in revealing the complexity of the drought
events.
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